Сайт gdz-vip.ru отправляется на летние каникулы

Параграф 4. Гдз по учебнику алгебра 10 класс Никольский глава 1.

Для того, чтобы увеличить изображение на компьютере- прокручивайте колёсико мыши удерживая клавишу Ctrl.

Онлайн Учебник Гдз

Содержание

Задания для повторения

Гдз по алгебре 10 класс Никольский Степень положительного числа

1. Глава «Корни, степени, логарифмы»

Параграф 4 «Степень положительного числа»

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41  Мы в соц сетях (    )  42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61




← Параграф 3 Параграф 5 →

Зелёный — рукописный почерк

Фиолетовый — печатный шрифт

Серый — задание отсутствует

Оранжевый — задания для повторения

Гдз по алгебре 10 класс Никольский Степень положительного числа

Обращаем ваше внимание, что в данном разделе разбирается
понятие степени только с натуральным показателем и нулём.

Понятие и свойства степеней с рациональными показателями
(с отрицательным и дробным) будут рассмотрены в уроках для 8 класса.

Итак, разберёмся, что такое степень числа.
Для записи произведения числа самого на себя несколько раз
применяют сокращённое обозначение.

Вместо
произведения шести одинаковых множителей
4 · 4 · 4 · 4 · 4 · 4 пишут
46 и произносят «четыре в шестой степени».

4 · 4 · 4 · 4 · 4 · 4 = 46

Выражение 46 называют степенью числа, где:

  • 4 — основание степени;
  • 6 — показатель степени.

основание и показатель степени

В общем виде степень с основанием «a» и показателем «n» записывается с помощью выражения:

определение степени в буквенном выражении

Запомните!
!

Степенью числа «a» с натуральным показателем «n», бóльшим 1, называется произведение «n»
одинаковых множителей, каждый из которых равен числу «a».

что такое степень числа

Запись an читается так: «а в степени n» или «n-ая степень числа a».

Исключение составляют записи:

  • a2 — её можно произносить как «а в квадрате»;
  • a3 — её можно произносить как «а в кубе».

Конечно, выражения выше можно читать и по определению степени:

  • a2 — «а во второй степени»;
  • a3 — «а в третьей степени».

Особые случаи возникают, если показатель степени равен единице или нулю (n = 1; n = 0).

Запомните!
!

Степенью числа «а» с показателем n = 1 является само это число:

a1 = a

Любое число в нулевой степени равно единице.

a0 = 1

Ноль в любой натуральной степени равен нулю.

0n = 0

Единица в любой степени равна 1.

1n = 1

Выражение 00 (ноль в нулевой степени) считают лишённым смыслом.

  • (−32)0 = 1
  • 0253 = 0
  • 14 = 1

При решении примеров нужно помнить, что возведением в степень называется нахождение значения
степени.

Пример. Возвести в степень.

  • 53 = 5 · 5 · 5 = 125
  • 2,52 = 2,5 · 2,5 = 6,25
Возведение в степень отрицательного числа

Основание степени (число, которое возводят в степень) может быть любым
числом — положительным, отрицательным или нулём.

Запомните!
!

При возведении в степень положительного числа
получается положительное число.

При возведении нуля в натуральную степень получается ноль.

При возведении в степень отрицательного числа в результате может получиться
как положительное число, так и отрицательное число. Это зависит от того чётным или
нечётным числом был показатель степени.

Рассмотрим примеры возведения в степень отрицательных чисел.

разные примеры возведения в степень отрицательных чисел

Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень,
то получается отрицательное число. Так как произведение
нечётного количество отрицательных сомножителей отрицательно.

Если же отрицательное число возводится в чётную степень, то получается положительное число.
Так как произведение чётного количество отрицательных сомножителей положительно.

Запомните!
!

Отрицательное число, возведённое в
чётную степень, есть число
положительное.

Отрицательное число, возведённое в
нечётную степень, — число
отрицательное.

Квадрат любого числа есть положительное число или нуль, то есть:

a2 ≥ 0 при любом a.

  • 2 · (−3)2 = 2 · (−3) · (−3) = 2 · 9 = 18
  • −5 · (−2)3 = −5 · (−8) = 40

Обратите внимание!

При решении примеров на возведение в степень часто делают ошибки, забывая, что записи
(−5)4 и −54 это разные выражения. Результаты возведения
в степень данных выражений будут разные.

Вычислить (−5)4 означает найти значение четвёртой степени отрицательного числа.

(−5)4 = (−5) · (−5) · (−5) · (−5) = 625

В то время как найти −54 означает, что пример нужно решать в 2 действия:

  1. Возвести в четвёртую степень положительное число 5. 54 = 5 · 5 · 5 · 5 = 625
  2. Поставить перед полученным результатом знак «минус» (то есть выполнить
    действие вычитание). −54 = −625

Пример. Вычислить: −62 − (−1)4

−62 − (−1)4 = −37

  1. 62 = 6 · 6 = 36
  2. −62 = −36
  3. (−1)4 = (−1) · (−1) · (−1) · (−1) = 1
  4. −(−1)4 = −1
  5. −36 − 1 = −37
Порядок действий в примерах со степенями

Вычисление значения называется действием возведения в степень. Это действие третьей ступени.

Запомните!
!

В выражениях со степенями, не содержащими скобки, сначала выполняют
возведение в степень, затем умножение и деление, а в
конце сложение и вычитание.

Если в выражении есть скобки, то сначала в указанном выше порядке выполняют действия в скобках,
а потом оставшиеся действия в том же порядке слева направо.

  САЙДБАР
МЫ В СОЦ СЕТЯХ

    

НАШЛИ ОШИБКУ?
Система Orphus
СТАТИСТИКА